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Systems governed by the standard mechanisms of biological or technological evolution are often described
by catalytic evolution equations. We study the structure of these equations and find an analogy with classical
thermodynamic systems. In particular, we can demonstrate the existence of several distinct phases of evolu-
tionary dynamics: a phase of fast growing diversity, one of stationary, finite diversity, and one of rapidly
decaying diversity. While the first two phases have been subject to previous work, here we focus on the
destructive aspects—in particular the phase diagram—of evolutionary dynamics. The main message is that
within a critical region, massive loss of diversity can be triggered by very small external fluctuations. We
further propose a dynamical model of diversity which captures spontaneous creation and destruction processes
fully respecting the phase diagrams of evolutionary systems. The emergent time series show rich diversity
dynamics, including power laws as observed in actual economical data, e.g., firm bankruptcy data. We believe
the present model presents a possibility to cast the famous qualitative picture of Schumpeterian economic
evolution, into a quantifiable and testable framework.
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I. INTRODUCTION

Maybe the most intuitive way to think of evolution dy-
namics is in the context of technological innovation. There,
innovation is a three step process. First, new elements
�goods, products, things� come into being through the pro-
cess of �re�combination and substitution of already existing
elements. Second, these new things then undergo a “valua-
tion” or selection process based on their “utility” associated
to them. This “utility” strongly depends on the surroundings
into which the new element was “born.” Surroundings are
defined as the set of all other yet existing things. Third, if the
new thing “survives” �i.e. gets selected by its surroundings�
it will itself form part of the surroundings, and will as such
influence the valuation process for all new things entering
the system in future time steps. In this view of evolutionary
processes, biological evolution is a special case of techno-
logical innovation, where recombination and substitution
happens on the DNA scale through sexual reproduction and
random inventions �mutations�.

To formally capture the dynamics of an evolving system
which is governed by a combination/substitution mechanism,
imagine that the system is characterized by a d dimensional
state vector x. Each component xi quantifies the abundance
of element i. The total maximum number of elements that
can potentially ever exist in the system is bounded from
above by d. �Note that it was shown in Ref. �1� that the limit
d→� exists and is well defined.� Its dynamics is governed
by the famous equation

�

�t
xi = �

j,k
�ijkxjxk − xi�

j,k,l
�ljkxjxk, �1�

where the second term ensures normalization of x. x thus

captures the relative abundances of existing elements. The
tensor elements �ijk serve as a “rule table,” telling which
combination of two elements j and k can produce a third
�new� element i. The element �ijk is the rate at which ele-
ment i can be produced, given the elements j and k are abun-
dant at their respective concentrations xj and xk. Equation �1�
has a long tradition; some of its special cases, depending on
the particular choice of �, are the Lotka Volterra replicators,
see, e.g., in Ref.�2�, the hypercycle �3�, or the Turing gas �4�.
Equation �1� has been analyzed numerically �5,6�, however,
system sizes are extremely limited. In contrast to the amount
of available qualitative and historical knowledge on evolu-
tion �7�, surprisingly little effort has been undertaken to solve
Eq. �1� explicitly.

To understand the dynamics of Eq. �1� analytically it was
suggested in Ref. �1� to make three assumptions: �i� the focus
is shifted from the actual concentration of elements xi, to the
system’s diversity. Diversity is defined as the number of ex-
isting elements. An element exists, if xi�0, and does not
exist if xi=0. �ii� For simplicity, the rule table � is assumed
to have binary entries, 0 and 1 only, �iii� the location of the
nonzero entries is perfectly random. To characterize the num-
ber of these entries the parameter r is introduced, which is
the rule table density or the density of productive pairs. The
total number of productive pairs in the system �i.e., the num-
ber of nonzero entries in �� is consequently given by rd.

With these assumptions, the idea in Ref. �1� was to rewrite
Eq. �1� into a dynamical map whose asymptotic limit could
be found analytically. The only variable of the corresponding
map is r. The initial condition, i.e., the initial number of
present elements is assigned a0. The solution of the system is
the asymptotical value �t→�� of diversity, a�. The amazing
result of this solution �as a function of r and the initial con-
dition a0� is that evolutionary systems of the type of Eq. �1�
have a phase transition in the r-a0 plane. In one of the two*thurner@univie.ac.at
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phases—after a few iterations—no more elements can be
built up from existing ones and the total diversity converges
to a finite number �sub-critical phase�. The other phase is
characterized that the advent of new elements creates so
many more possibilities to create yet other elements that the
system ends up producing all or almost all possible d ele-
ments. This we call the super-critical or “fully populated”
phase. Even though the existence of a phase transition was
hypothesized some time ago in Ref. �8�, it is surprising that
the phase transition is mathematically of exactly the same
type as a Van der Waals gas. �It is perhaps noteworthy that
the Fisher structure �linear form of Eq. �1�� does not have
such a transition, for this a nonlinear model is needed.� Note
that this model is a mathematically tractable variant of the
so-called bit-string model of biological evolution, introduced
in Ref. �8�.

The dynamics discussed so far assumes that a system is
starting with some initial diversity a0, which increases over
time, up to a final asymptotic level, a�. However, the oppo-
site dynamics is also possible. Imagine one existing element,
say i, is removed from the system, a species is dying out, or
a technical tool gets out of fashion or production. This re-
moval can imply that other elements, which needed i as a
production input will also cease to exist, unless some other
way exists to produce them �not involving i�. Note, that all
the necessary information is stored in �.

The first part of this paper studies the dynamics of evolu-
tionary systems which exist in the highly populated phase,
and where �0 elements get kicked out at the initial time step.
These defected elements may trigger others to default as
well. We demonstrate the existence of a different phase tran-
sition in the �0-r plane, meaning that for a fixed rule density
r there exists a critical value of initial defects, above which
the majority of elements will die out in a cascade of second-
ary defects.

However, this is only part of the story. In reality, the final
diversity a� will not be a constant, but will be subject to
fluctuations. The relevant parameter will become the diver-
sity �number of nonzero elements in x� over time, at. In
particular, there are two types of fluctuations: elements will
get created spontaneously at a given rate, and existing ele-
ments will go extinct at another rate. The second part of this
work proposes a dynamical model of an evolutionary system
incorporating these spontaneous processes, compatible with
their inherent phase diagrams. The model is characterized by
the rule density r, one creation and one destruction process,
the latter ones modeled by simple Poisson processes. We
study the resulting dynamics and find several characteristics
typical to critical systems such as destructive economical dy-
namics, e.g., described qualitatively by Schumpeter some
time ago �9�. An example from biology are the large extinc-
tions of species over short time scales, see, e.g., Ref. �10�
and references therein.

II. THE CREATIVE PHASE TRANSITION

The dynamics of diversity �number of existing elements
over time� has been analytically solved in Ref. �1�. To be
self-consistent in this section we review the argument: It is

first assumed that the system has a growing mode only �ten-
sor elements �ijk are zero or one but never negative�. For this
situation, Eq. �1� was projected onto a dynamical map,
whose asymptotic solutions can be found.

If the number of nonzero elements in x�t� is denoted by at,
it was shown in Ref. �1� that the nonlinear, second order
recurrence equations associated with Eq. �1� are given by

at+1 = at + �at, �at+1 =
r

d
�1 −

at+1

d
��at+1

2 − at
2� , �2�

with the initial conditions a0 being the initial number of
present elements and a−1�0, by convention. The question is
to find the final diversity of the system, a�. These equations
are exactly solvable in the long-time limit. For this end de-
fine, ct��at+1 /�at, and look at the asymptotic behavior, c
� limt→�ct. From Eq. �2� we get

c = 2r�1 −
a�

d
�a�

d
. �3�

On the other hand we can estimate a� asymptotically by

a� = a0�
t=0

�

ct =
a0

1 − c
. �4�

Introducing Eq. �3� into Eq. �4� one gets a third-order equa-
tion, whose solutions are the solution to the problem. Re-
markably, these solutions are mathematically identical to the
description of real gases, i.e., Van der Waals gases. As real
gases, our system shows a phase transition phenomenon. The
corresponding phase diagram, as a function of the model
parameter r and the initial condition a0 is shown in Fig. 1.
Formally, the relation to the Van der Waals gas can be made
more explicit by defining, V�a� /d and ��a0 /d. Using this
in Eqs. �3� and �4� gives V−�=2r�1−V�V2. Renaming vari-
ables

P �
1

V
+

1

2rV3 and T �
�

2rV3 �5�

leads to

FIG. 1. �Color online� Phase diagram of the creative dynamics
over the r-a0 space.

HANEL, KAUFFMAN, AND THURNER PHYSICAL REVIEW E 76, 036110 �2007�

036110-2



�P −
1

V2�V = T , �6�

which is exactly a Van der Waals gas of point particles with
constant �negative� internal pressure.

III. THE DESTRUCTIVE PHASE TRANSITION

In the dynamics studied so far, diversity can only increase
due to the positivity of the elements in �. It is important to
note that in this setting the phase transition can not be
crossed in the backward direction. This is because of two
reasons. First, the system forgets its initial condition a0 once
it has reached the �almost� fully populated state. This means
that after everything has been produced one can not lower
the initial set size any more. In terms of the Van der Waals
gas equation analogy we can not lower the “temperature”
and we can not cross the phase transition in the backward
direction. Second, if r is a homogeneous characteristic of the
system then it is also impossible to manipulate the “pressure”
of the system and we remain in the fully populated phase for
ever.

The natural question thus arises what happens to the dy-
namics if one randomly kills a fraction of elements in the
fully �or almost fully� populated phase. In the case that an
element k gets produced by a single pair �i , j� and one of
these—either i or j—gets killed, k can not be produced any
longer. We call the random removal of i a primary defect, the
result—here the stop of production of k—is a secondary de-
fect, denoted by Sdef. The question is whether there exist
critical conditions of r and a primary defect density �0, such
that cascading defects will occur.

As before, we approach this question iteratively, by ask-
ing how many secondary defects will be caused by an initial
set of D0 randomly removed elements in the fully populated
phase. We define the primary defect density �0�D0 /d. The
possibility for a secondary defect happening to element k
requires that all productive pairs, which can produce k, have
to be destroyed, i.e., at least one element of the productive
pair has to be eliminated �on average there are r production
pairs for k�. This requires some “bookkeeping” of the num-
ber of elements that partially have lost some of their produc-
tive pairs due to defects. We introduce a bookkeeping set Gn
of sequences gnl, Gn= 	gn0 ,gn1 ,gn2 ,gn3 , ¯ 
, where dgnl de-
notes the number of elements that have lost l ways to be
produced �i.e., productive pairs�, given that initially n ele-
ments have been eliminated.

To be entirely clear, let us introduce the first defect. This
defect will on average affect 2r productive pairs in the sys-
tem, i.e., there will be 2r elements that lose one way of being
produced. �Why? Since there are dr productive pairs there
are 2dr indices referring to an element involved in denoting
the pairs. Consequently, there are 2r indices on average per
element.� We naturally assume d�d�0�r�1, and disregard
the vanishingly small probability that one element loses two
or more of its productive pairs by one primary defect.

Before the first defect we have G0= 	1,0 ,0 , ¯ 
, meaning
that there are d entities that have lost none of their producing
pairs. The first defect will decrease this number d→d−2r,

i.e., we get 2r elements that have lost one of their producing
pairs. Consequently we find G1= 	1− p , p ,0 ,0 , ¯ 
, where p
is defined as p�2r /d. Now, defecting the second element
will affect another 2r elements through their producing pairs.
This time we affect an element that has lost none of its pro-
ducing pairs with probability 1− p, and with probability p we
affect an element that already has lost one of its producing
pairs. Iterating this idea of subsequent defects leads to the
recurrence relations

gn+10 = gn0�1 − p� and gn+1k = gnk + �gnk−1 − gnk�p .

�7�

It is easy to show that gnk follows a binomial law, gnk

= � n
k

�pk�1− p�n−k. The number of secondary defects after n
introduced defects, denoted by Sn

def, is just the number of all
entities that have lost all of their �on average� r producing
pairs and can be estimated by d�k	rgnk. Defining

Sn
def = �

k	r

gnk, �8�

one finds the update equation for Sn
def by inserting Eq. �7�

into Eq. �8�,

Sn+1
def = Sn

def + pgnr−1. �9�

Now, if d�0 and d�1 are the numbers of primary and second-
ary defects, respectively, one has to identify

�1 = Sd�0

def . �10�

This is nothing but

�1 = p�
n	r

d�0

gnr−1 = p�
n	r

d�0 � n

r − 1
�pr−1�1 − p�n−r+1. �11�

Since we assume d�d�0�r�1, Stirling’s approximation is
reasonable, ln�n!��n ln�n�−n+ 1

2 ln�2
n�, so that the bino-
mial coefficient is approximated by, � n

m
��� n

m
�mem�2
m�−1/2,

where �1−m /n�n−m�exp�−m�, for n�m. Further, one can
approximate �1− p�n−r+1�exp�−np�. Inserting these approxi-
mations into Eq. �11�, and replacing the sum by an integral,
one gets

�1 =
pr

�2

�r − 1�1/2−rer−1

r

d�0

dxxr−1e−xp. �12�

Since pd�0=2r�0, and by approximating pr�0 �for the
lower limit� we rewrite the integral


r

d�0

dxxr−1e−xp � p−r
0

2r�0

dyyr−1e−y , �13�

and we can finally compute

�1 = ��r�f�r,�0��0
r , �14�

with

��r� =
1

r

�2r�r

�2

�r − 1�1/2−rer−1
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f�r,�0� = �
n=0

�
1

n!

r

r + n
�− 2r�0�n. �15�

Here f is obtained by expanding the exponential in the inte-
gral of Eq. �13� into a Taylor series.

What remains to be done is to iterate Eq. �14�. There are
two possible ways of doing so. In the first iteration scheme
we think of collecting the primary and secondary defects
together and assume that we would start with a new primary
defect set of size �0�=�0+�1. The tertiary defects therefore
would be estimated by �2=�1�−�1, where �1� are the second-
ary defects associated with �0�. This leads to the recursive
scheme �A�,

�n � �
k=0

n

�k, �n+1 = ��r�f�r,�n��n
r − �n + �0 �A� .

�16�

The second way to iterate Eq. �14� is to assume that we
use the d�1 secondary defects as primary defects on the
smaller �rescaled� system d�1−�0� so that we look at a new
primary defect ratio �0�=�1 / �1−�0�. The result �1� then has to
be rescaled inversely to give the tertiary defects in the origi-
nal scale, i.e., �2= �1−�0��1�. Iterating this idea leads to the
recurrence relation �B�,

�n � �
k=0

n

�k, �n+1 = ��r��1 − �n−1�1−rf�r,
�n

1 − �n−1
��n

r �B� ,

�17�

with �−1�0.
The result in terms of a phase diagram of the two possible

iteration schemes �A� and �B� is given in Fig. 2�a� and 2�b�,
respectively. The asymptotic defect size �� �for t→�� is
shown as a function of the parameters r and the initial defect
density �0. As before, a clear phase transition is visible,
meaning that at a fixed value of r there exists a critical num-
ber of initial defects at which the system will experience a

catastrophic decline of diversity. Unfortunately, an analytical
solution for the asymptotic iterations of Eq. �14� seems to be
beyond the capabilities of the authors. It is interesting that
for complete destruction of diversity �plateau in Fig. 2� not
very large values of �0 are necessary.

IV. COMBINED DYNAMICS: CREATIVE GALES
OF DECONSTRUCTION

Having established the existence of phase transitions in
both the creative and destructive regimes, and being
equipped with the update equations for the respective cases
Eqs. �2� and �14�, it is natural to couple these update equa-
tions and study their combined dynamics. The relevant vari-
able now becomes the diversity in the system as a function of
time, at. However, the question how this should be done is
neither trivial nor uniquely determined.

One realistic scenario might be that at any point in time
some goods/species/elements may come into being spontane-
ously and others go extinct at certain rates. First, for the
introduction of new elements we introduce a stochastic rate,
�+�0 of a Poisson process, so that �d−at��t

+ new species
may be expected in one time unit. Note, that there are d
−at “unpopulated” elements in the system. These randomly
created elements are elements that did not get produced
through �re�combination or substitution of existing ones, but
are “out of the blue” inventions. The natural time unit we are
supplied with is one creative generation at→at+1. The spon-
taneous creation may eventually increase the critical thresh-
old and the system may transit into the highly diverse phase
�think of this process to randomly alter a0 in the creative
update dynamics�.

On the other hand there are spontaneous processes that
destroy or remove species at a stochastic rate, �−�0 �Pois-
son process�, such that about at�t

− new defects may be ex-
pected per time unit. It cannot be assumed a priori that the
iterative accumulation of secondary defects in the system, as
described above, operates at the same time scale as the spon-
taneous or the deterministic creative processes.

For making an explicit choice we may assume that during
one time unit there happen t generations of secondary de-

FIG. 2. �Color online� Phase diagram for the defect dynamics for two ways of iterating Eq. �14� described in the text.
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fects, taking into account the relative ratio of innovative and
secondary defect generations processed per time unit. We
assume that t can be modeled by a Poisson process whose
rate, �t�= becomes a parameter of the model. For the com-
putations below we have chosen =0.1.

When we look at the way secondary defects evolve in
generations we are left with a culminated number of second-
ary defects �tt

after t generations and a remainder �tt
,

which would have to be added to �tt
in the next defect

generation, t+1 but which—by assumption—is falling into
the bookkeeping of the next creative-generation time step t
+1. What we say is that during time step t→ t+1, there are
�−at=d�t,t

species removed from the system, where �mt

=�k=0
m−1�kt is the cumulated ratio of secondary defect ratios �kt

of defect-generation k at time step t. The remaining defects
of generation t have to be accounted for in the next time
step together with the newly introduced spontaneous defects,
so that �0t+1=

at

d �t
−+�t,t

. The update of defect generations
now can be performed t times according to

�m+1t = �1 − �mt��rf�r, �̃mt��̃mt
r , �18�

where we have considered the rescaling approach �B� to sec-
ondary defect generations. A similar equation can be derived

for scheme �A�. For convenience of notation we write for the

rescaled defect ratios, �̃mt�
�mt

1−�mt
. If now, by coincidence, the

remaining defects from the last time step and the spontane-
ously introduced defects are sufficiently many and there are
enough defect-generations t processed in that time step, the
culminating secondary defects may lead to a breakdown of
the system from the high to the low diversity regime.

All that is left is to insert this dynamics into the creative
update equation. To do so we first note that without defects,
�at depends on both at and at−1. However, due to the occur-
ring defects, at−1 will not remain what it was when t becomes
updated to t+1, but will be decreased by the occurring de-
fects in this time span. For this reason, it is convenient to
introduce a new variable bt which takes the place of at−1 in
the coupled update process. More precisely, bt+1�at−�−at.
For the growth condition to be well defined we require at
�bt, which is guaranteed by at+1=bt+1+�+at where

�+at �
r

d
�1 −

at

d
��at

2 − bt
2� + �d − at��t

+, �19�

is the number of deterministically �by the creative update
law� and spontaneously introduced species in the creative-
generation t. This sort of coupling allows us to take a look at
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FIG. 3. �Color online� Time series �left� and time increment distribution �right� of the coupled dynamics for a fixed r=5 and fixed
Poissonian rates  and �±. The variable varied is a0=0.02, 0.056, and 0.1. Straight lines are fits to power laws with the slopes given by �+

��� and �− �dots�, indicating whether �a�0 or �0. The Poissonian resembling the creative driving noise is also seen as a solid line in �d�.
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how diversity of systems may evolve over time, driven by
the spontaneous creation and destruction processes �±, which
may reflect exogenous influences, while on the other hand
the average number of defect-generations  per creative gen-
eration t, and the average number of productive pairs per
species r express endogenous properties of the system, i.e.,
whether the defects process slow or fast ��, and the average
dependency �r� of the catalytic network.

We study the resulting time series for this dynamics for
several values of r, a0, , and �±. In Fig. 3, by fixing r=5
and the Poisson rates , and �± and by varying a0 �as a lower
bound� from 0.01 to 0.1, we cross the creative phase transi-
tion line from the sub-critical to the fully populated phase
�super-critical� �a�–�c�. When the system is prepared at the
critical phase, at a0=0.056 �b�, we observe a flip-flop transi-
tion between the two phases. The flip-flop transitions happen
over very short time intervals. In Fig. 3�d�–3�f� the corre-
sponding increment distributions of �at�at−at−1 are shown.
The distribution for positive �a is power law in all cases,
while a power behavior for the �a�0 is only observed in
the critical phase. Power-law fits for the chosen model pa-
rameters yield ��1 for the exponents. Within the regions of
the populated and the low-diversity phases the distribution
for the �a�0 case is much flatter. The Poissonian driving in
the creative dynamics in the sub-critical region is clearly
seen for a0=0.02 in Fig. 3�d�.

V. CONCLUSION

We have shown the existence of a phase transition in sys-
tems capable of evolutionary dynamics. The main message is
that given the system is in its highly diverse state, the re-
moval of a relatively small fraction of elements can cause
drastic declines in diversity. We then proposed a dynamical
model to study time series of diversity in systems governed
by the evolution equation �1� under the influence of external
spontaneous creation and destruction processes. We empha-
size that we strictly stick to the structure of Eq. �1� and do
not discuss variants, such as the work of Ref. �11� where a
linear version �resembling catalytic equations� was studied,
however with an explicit “selection” mechanism incorpo-
rated in a dynamic rule table, i.e., ��t�.

We think that with the methodology presented in this pa-
per it could—in principle—become possible to arrive at a
quantitative formulation of economic dynamics which, e.g.,
Schumpeter has heuristically and qualitatively described as
“creative gales of deconstruction.” As an example for de-
structive processes which can be quantified in real world
situations one can think of bankruptcies of firms, where the
existence of power-laws has been described �12�. Let us fi-
nally mention that the model presented here does of course
not only relate to technological evolution but to any biologi-
cal, social, or physical system governed by evolution equa-
tions of the type of Eq. �1�.
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